Chronic Lymphocytic Leukaemia Biology, genetics and prognosis

Peter Browett
Leukaemia & Blood Cancer Research Unit
Faculty of Medical and Health Science
University of Auckland

What is chronic lymphocytic leukaemia?

CLL is a low grade lymphoproliferative blood cancer caused by an accumulation of monoclonal B lymphocytes in the bone marrow, blood, lymph nodes and spleen

What is chronic lymphocytic leukaemia?

What is chronic lymphocytic leukaemia?

CLL is the most frequent leukaemia in Western countries including NZ

- Incidence of 4 per 100,000 population
- Median age 70 75; M > F

Age and Incidence of CLL

UK Cancer Registry 2015 - 17

Diagnosis of CLL

Full blood count and blood film analysis

Cell marker studies "Immunophenotype"

Monoclonal B cell population with expression of CD5 and coexpression of B cell markers CD19, CD20, CD23

Diagnosis of CLL

All cases of CLL preceded by a pre-malignant phase called **Monoclonal B cell Lymphocytosis**

Present in 5% of the population age > 60, with 1-2% progressing to CLL each year

What causes CLL?

Increased understanding of the genomic landscape and the spelling mistakes / mutations in the genetic code of the CLL cells

A permissive microenvironment in the bone marrow and lymph nodes to support the CLL cells

No clearly established environmental risk factors identified to date

Increased risk of CLL in first degree relatives of patients

Is there a familial risk in CLL?

No single predisposition gene identified unlike breast and colon cancer

Likely to be interaction of multiple genes and variations within those genes

Risk for relatives remains very low

Presentation of CLL

Raised lymphocyte count in the peripheral blood Suppression of the normal blood counts (in red box) Enlarged lymph nodes and / or spleen

Presentation of CLL

70% of patients early stage of disease at presentation with no anaemia or thrombocytopenia and no significantly enlarged nodes

Predicting outcome in CLL

Recent discoveries in genetic alterations in CLL

The importance of the immunoglobulin gene mutation status

Incorporating these findings into new prognostic scores for patients

The increasing role of measuring minimal residual disease

Personalized Haematology

Chronic Lymphocytic Leukaemia
Improved understanding of the mutations / spelling
mistakes that occur in the genes of the CLL cells

Treatment decisions made based on the different mutations found in each case of CLL

FISH studies in CLL

FISH is an acronym for ...

Fluorescence In Situ Hybridization

This technique exploits the ability of a fluorescent labelled DNA molecule to bind specifically to DNA

FISH studies in CLL

FISH studies in CLL

Four chromosomes analyzed:

- Del 13q
 55%
- Trisomy 12 20%
- Del 11q
 25%

TP53 gene Add sequencing gene if FISH negative

Probability of OS From Diagnosis, by Genetic Aberration

Impact of TP53 mutations

Poor response to conventional therapy eg FCR Good responses to novel agents Ibrutinib and Venetoclax Venetoclax funded by Pharmac

Progress in Genomic Technology

1990

2020

200 million fold

600 bases per day

120,000,000,000 bases per day

270 000 years per human genome

1 day per human genome

Progress in Genomic Technology

10 fold increase in speed

40 million fold increase in speed

4 million fold increase in speed

Genetics of leukaemia

Translocations

Gene Sequencing

Genetics of CLL

538 patients with CLL whole exome sequencing 44 recurrently mutated genes

Landau et al Nature 2015

Genetics of CLL and Treatment

Impact of IGVH Mutation Status

Impact of IGVH Mutation Status

Impact of IGVH Mutation Status

Hamblin et al Blood 1999

Integration of biologic markers into clinical staging

Prognostic factor	Points
Del17p on FISH or <i>TP53</i> mutation	4
Unmutated IGHV genes	2
Serum β2 microglobulin >3.5 mg/L	2
Rai stage I–IV	1
Age >65 years	1

Cumulative CLL- IPI score	Risk category	5-year TFS ^a
0–1	Low risk	78%
2–3	Intermediate risk	54%
4–6	High risk	32%
7–10	Very high risk	0%

CLL-IPI Lancet Oncology 2016

Minimal residual leukaemia

Remission is defined normal blood count, normal bone marrow and resolution of lymphadenopathy

Detection of Minimal Residual Disease (MRD)

Detection of MRD in CLL by Flow Cytometry

Monitor patients post therapy Improved outcomes if MRD negative

Prognostic Impact of MRD in CLL

Biology of CLL Conclusions

Significant advances in understanding the genetics and biology of CLL

- Impact of TP53 status
- Impact of IGVH mutation status
- Emerging data from genomic sequencing studies

Moving into contemporary practice

Emerging role of MRD monitoring

Thank you

Leukaemia & Blood Cancer Research Unit:

Stefan Bohlander

Andrew Wood

Purvi Kakadia

Marjan Askarian Amiri

Robyn Lints

Rhea Desai

Sarvanez Taghavi

Mandy De Silva

Leon Griner

Omid Delfi

Matthew Prouse

Jenny Chien

Alyona Oryshchuk

Alix Coysh

Maryam Saberi

Niloofar Zandvakili

Huimei Lee

Lachlan Macdonald

Jessica Chase

Christina Walker Chloé Morin

our mission is to care, our vision is to cure

The Family of Marijana Kumerich